报告人:华中师范大学黄继才教授
报告题目:Bifurcations in the modified RM equation: from asymptotic dynamics to transient dynamics
摘要:In this talk, we take Rosenzweig-MacArthur (RM) model with generalist predator as an example in a constant or changing environment. When the environment is fixed, we provide a more easily verifiable classification to determine the types and codimension of nilpotent singularities in a general planar system. Second, by using some algebraic methods, we show that the highest codimension of a nilpotent focus is 4 and the sample RM model with generalist predator can exhibit nilpotent focus bifurcation of codimension 4. When the environment is changing, we study the impact of the rate and intensity of a nonlinear environmental change on dynamics. It is based on a joint work with Min Lu and Professor Hao Wang.
报告时间:2023年10月26日上午10:30-12:30
报告形式:腾讯会议,会议号:500-531-129
获取会议密码请发邮件至:ysu@hit.edu.cn
报告人简介:黄继才,华中师范大学教授、博士生导师。1999年、2002年分别本科、硕士毕业于华中师范大学数学系,2005年获中国科学院数学与系统科学研究院数学所博士学位。主要从事常微分方程定性理论、分支理论及其应用研究。在JDE、JDDE、、SIADS、JMB、SAPM、BMB 等期刊发表学术论文四十余篇。其中发表在SIADS(2019) 的文章被美国工业与应用数学学会在《SIAM News》专文报道,并被选为该刊Featured Article。主持国家自然科学基金4项,参与国家自然科学基金重点项目1项,曾获湖北省自然科学奖三等奖。